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1. Introduction and summary

The experimental program at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven

National Laboratory [1], has provided considerable insight into the properties of strongly

interacting matter at high energy densities. Phenomenological analysis has established sev-

eral striking features of such substance. First, the results on elliptic flow are well described

by hydrodynamical models only if the shear viscosity is taken very low. The medium

behaves like a strongly coupled plasma which resembles a liquid more than the gas of

quasi-free partons long expected to be the state of matter at such energy densities, known

as the Quark Gluon Plasma (QGP). As a second indication of this behavior, high energy

partons traversing the medium are strongly quenched. This phenomenon is usually charac-

terized, in models of medium-induced radiation, by the so-called quenching parameter (or

transport coefficient) q̂ [2]. This parameter has the meaning of the average squared trans-

verse momentum transferred from the medium to the traversing parton, per unit mean free

path (see the reviews [3, 4]).

Phenomenological models differ in the detailed framework for calculating the radiative

energy loss [2, 5], in the treatment of the geometry and dilution of the medium [6], as well as

in the consideration of flow-induced radiation [7] and of additional elastic scattering [8]. The

extracted values of the transport coefficient are q̂ ∼ 1 ÷ 15 GeV2/fm, substantially larger

than those found in studies of hadron production in DIS on nuclear targets, see e.g. [9].

While the lower bound is compatible with expectations from perturbative QCD [10], higher

values demand additional non-perturbative mechanisms. Therefore, and while waiting for

upcoming both experimental and phenomenological efforts, it is of uttermost importance

to get further information on the possible values of q̂ in the strong coupling limit.

The traditional tool for such studies, namely lattice QCD, cannot be presently applied

to determining the jet quenching parameter. In contrast, AdS/CFT duality [11] provides

a powerful calculational framework where quantum properties of supersymmetric Yang-

Mills theories at strong ’t Hooft coupling λ = g2
YMNc and large number of colors Nc, are

translated into classical computations in a gravitational background. The applications of
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AdS/CFT techniques to thermal deformations of gauge theories started in [12]. There,

the thermodynamics of the black brane geometry was conjectured to describe the behavior

of the dual quantum field theory at the Hawking temperature of the black hole. In the

limit of a flat horizon, the dual field theory lives in an unconfined phase at strong coupling.

Placing probe charges in such a background corresponds to the insertion of sources for very

massive quarks in the dual theory. Following this lore, a number of important results where

derived concerning the qq̄ potential, including features like confinement and screening both

at zero and finite temperature [13]. They typically involve a Wilson line stretching either

in a timelike or a spacelike direction; rotating Wilson lines where also examined as putative

duals to high spin mesons. More recently, the study of thermodynamical properties was

extended to encompass near equilibrium magnitudes [14]. A not minor surprise came out

with the finding of a universal ratio between the shear viscosity and the entropy density,

η/s = 1/(4π) [15] for quantum field theories admitting a holographic dual description.

This ratio was conjectured to set a universal bound on physical thermal field theories. The

data at RHIC suggest that the values for the QGP are compatible with the lower bound,

this strongly supporting the use of AdS/CFT to describe such a system.

Motivated by these successful applications of AdS/CFT to the study of strongly cou-

pled phenomena in thermal gauge theories, Liu, Rajagopal and Wiedemann (LRW) recently

proposed a scheme to determine the jet quenching parameter [16].1 In their construction, it

is central to use the identification [4] of this parameter with the coefficient in the exponent

of an adjoint Wilson loop computed along a rectangular contour C with a large distance

L− along the light-cone, and a spacelike separation L, L¿ L−:

〈WA(C)〉 ≡ exp

[
−1

4
q̂L−L2

]
. (1.1)

At large Nc this Wilson loop can be expressed in terms of the Wilson loop for the fun-

damental represention, 〈WA(C)〉 ' 〈W F (C)〉2. In turn, the AdS/CFT correspondence

tells us that this fundamental Wilson loop can be computed [13] evaluating the classical

Nambu-Goto action S for a string ending on the boundary along the previous contour,

〈WF (C)〉 = exp [−S(C)] . (1.2)

The result in [16], obtained in a near extremal D3 background corresponding to N = 4

SUSY QCD at finite temperature, exhibited some interesting features.2 The quenching

parameter q̂ turned out to be proportional to T 3 (which of course provides the correct

dimensions) and to
√
λ (thus to

√
Nc), the latter being totally different to the a priori

1After the initial proposal, a host of papers have appeared [17 – 21] which have shown that this result is

not universal. Also the very interesting and related problem of a drag force on the brane has been addressed

by several authors [22].
2Although the relation between the results in this framework and real QCD is unclear, the hope is that

an understanding of the size and dependences of the jet quenching parameter could provide some kind of

upper bound, while the perturbative QCD results should provide a lower bound. In this way, computing

the results in less supersymmetric backgrounds might provide an indication (assuming a smooth behavior

for the transition from N = 4 SUSY QCD to real QCD) of the expected value for this parameter at strong

coupling.
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expected dependence on the number of degrees of freedom of the energy or entropy densities,

hence ∝ N 2
c . In this way, the quenching parameter appears not to be a direct measure of

the energy density of the system, q̂ ∝ ε3/4 as usually assumed [10], but of the third power

of the temperature. Moreover, the numerical values turned out to be astonishingly close to

the experimental data: for standard values αs = 1
2 and Nc = 3, q̂ = 0.94 (3.16) GeV2/fm

for T = 200 (300) MeV. Notice, however, that these quantities imply a ‘t Hooft coupling

λ = 6π, while the gravity computation is strictly valid in the limit λ→∞. Thus, a more

precise theoretical value of q̂ in the strong coupling limit neatly demands the understanding

of finite ‘t Hooft coupling corrections to the result in [16]. This is one of the targets in this

letter.

The paper is organized as follows. In the next section, trying to keep ourselves as

generic as possible, we provide a formula for the jet quenching parameter that can be

readily applied to a large class of metrics. As a quick example, we present the results for

the thermal deformation of Witten’s D4-brane background [12]. We also comment on the

fact that this formula admits a straightforward generalization to encompass quark sources

of finite mass, and provide some preliminar numerical analysis. In section 3 we compute

the first correction in the inverse ‘t Hooft coupling to the value given by LRW. We show

that this correction mildly diminishes the jet quenching parameter. This suggests a smooth

interpolation between the strong coupling regime and the perturbative results, in analogy

with what has been observed for the free energy and the ratio η/s [23, 24]. In section 4, the

effect of turning on chemical potentials3 is thoroughly investigated. The relevant metric

corresponds to the background of a stack of rotating D3-branes with maximal number of

angular momenta. We explore the evolution of the jet quenching parameter along the space

of these three independent charges. We typically find an enhancement within the range of

thermodynamical stability. We further compare with recent results which have appeared

on the subject [19 – 21].

2. The jet quenching parameter

In this section we shall provide a formula that allows to readily compute q̂ in string theory

backgrounds within the class of metrics that are suitable for an AdS/CFT duality, including

the case in LRW. We will follow essentially the same steps as in [17]. The family of ten

dimensional metrics of interest for us adopt the following form:

ds2 = GMN dX
MdXN

= −c2T dt2 + c2X dx
idxi + c2R dr

2 +GMndX
MdXn , (2.1)

where XM = (t, xi, r;Xn), i = 1, . . . , p, n = 1, . . . , 8 − p. This class of metrics encom-

passes rotating backgrounds which we shall analyze later. We are interested in black brane

solutions.

3These chemical potentials are conjugated to R-charge densities of N = 4 SYM theory. They should

not be confused with that corresponding to the baryon density in QCD whose implementation in the dual

supergravity side is currently an open problem. Indeed, the baryonic charge is not dual to a U(1) isometry

of the supergravity background. We thank Krishna Rajagopal for stressing the importance of this point.
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Following [16] we will consider the following lightlike Wilson line

x− = τ , x2 = σ , r = r(σ) , (2.2)

with x± = (x0±x1)/
√

2, τ ∈ (0, L−), σ ∈ (−L
2 ,

L
2 ) and L− À L so that isometry along x−

direction holds approximately. Also we shall take a symmetric configuration around σ = 0,

hence r0 = r(0) is an extremal point, r′(0) = 0. The induced metric reads as follows

gττ =
1

2
(−c2T + c2X) , gσσ = c2X + c2R r

′(σ)2 . (2.3)

From these expressions, the Nambu-Goto action takes the following form

S =
L−√
2πα′

∫ L/2

0
dσ

(
c2X − c2T

)1/2 (
c2X + c2R r

′(σ)2
)1/2

. (2.4)

The energy is a first integral of motion, from which the following equation for the profile

r(σ) can be extracted

r′(σ)2 =
c2X
c2R

(
k c2X (c2X − c2T )− 1

)
, (2.5)

where k is an integration constant. Let us assume that the r.h.s. of (2.5) does not vanish at

any location r ∈ (rH ,∞) with rH the location of the horizon, while, on the other hand, we

assume cR(rH) =∞. Then, it necessarily holds that r0 = rH , and the Wilson line extends

symmetrically from r = ∞ down to rH . With these assumptions, which we must verify

case by case, the profile can be obtained from

σ(r) =

∫ r

rH

cR
cX

dr
(
k c2X (c2X − c2T )− 1

)1/2 . (2.6)

In particular, the integration constant k is linked with L by the relation σ(∞) = L
2 . Going

to a dimensionless radial coordinate ρ = r/rH , this is

L = 2 rH

∫ ∞

1

cR
cX

dρ
(
k c2X (c2X − c2T )− 1

)1/2 . (2.7)

The prescription in LRW for q̂ calls for the leading behavior with L in the limit LT ¿ 1.

This is clearly related to the limit k →∞, i.e.,

L =
2 rH√
k

∫ ∞

1

cR dρ

c2X (c2X − c2T )1/2
+O(k−3/2) . (2.8)

Using (2.5) and (2.6), we can write the action as follows

S =
rH L

−
√

2πα′

∫ ∞

1

√
k (c2X − c2T ) cX cR dρ(

k c2X (c2X − c2T )− 1
)1/2

. (2.9)

We must still subtract the contribution corresponding to the self-energy of the quarks.

This is given by the Nambu-Goto action for a pair of Wilson lines that stretch straight

from the boundary to the horizon,

S0 =
rH L

−
√

2πα′

∫ ∞

1
cR (c2X − c2T )1/2 dρ . (2.10)
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To leading order in k−1, taking into account that L is given by (2.8), SI = S−S0 reads [17]

SI =
L−√
2πα′

L2

8rH

(∫ ∞

1

cR dρ

c2X (c2X − c2T )1/2

)−1

. (2.11)

From here, let us extract an expression for the jet quenching parameter. We find it conve-

nient to define

c2T (ρ) =
1

∆R
ĉ2T (ρ) , c2

X(ρ) =
1

∆R
ĉ2X(ρ) , c2

R(ρ) = ∆R ĉ
2
R(ρ) , (2.12)

where the dimensionless quantity ∆R reads

∆R =

(
(α′)5−p λ

r7−p
H

)1/2

, (2.13)

λ being the ‘t Hooft coupling in the p + 1 dimensional dual gauge theory. From these

formulas, (1.1) and (1.2), we obtain

q̂ =
1√
2πλ

(rH
α′

)6−p (∫ ∞

1

ĉR dρ

ĉ2X (ĉ2X − ĉ2T )1/2

)−1

. (2.14)

As it stands, this formula calls for a translation of rH in terms of the field theoretical

quantities. In the case of non-rotating backgrounds we can provide a more explicit solution.

For this class of metrics the Hawking temperature is given by the standard formula

T =
1

4π

c2T
′
(r)√

c2T (r) c2R(r)

∣∣∣∣∣∣
r=rH

. (2.15)

Using this definition of the temperature, we can solve for rH/α
′ as follows

rH
α′

=

[
4π
√
λT




√
ĉ2T (ρ) ĉ2

R(ρ)

ĉ2T
′(ρ)



∣∣∣∣∣
ρ=1

] 2
5−p

, (2.16)

and replace it in (2.14) to arrive at the formula

q̂ =
1√
2π

[
16π2

(√
ĉ2T (1) ĉ2

R(1)

ĉ2T
′(1)

)2 ] 6−p
5−p

T 2
(
T 2 λ

) 1
5−p

(∫ ∞

1

ĉR dρ

ĉ2X (ĉ2X − ĉ2T )1/2

)−1

. (2.17)

This expression is invariant under reparameterization of the radial coordinate (upon suit-

able change of the integration limits). Indeed, the dependence on T and λ for generic p

also coincides with the discussion in LRW. For example, as it stands, it can be directly

used to extract the quenching parameter for the thermal deformation of Witten’s D4-brane

background. In this metric, the fifth dimension has been compactified to a circle of radius

`. Hence, the four dimensional effective coupling is λ̃ = λ/` ≡ 4παSYMNc. Therefore we

may write for the effective quenching parameter the following expression

q̂ ' 14.26 c T 3 αSYMNc , (2.18)

– 5 –
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Figure 1: Evolution of q̂ with m for finite mass quarks. The solid curve represents the D3

background and the vertical axis is q̂/(
√
αSYMNc T

3) which asymptotes to 18.87 . . . as in LRW.

The dashed curve represents the D4 background. The vertical axis is now q̂/(c αSYMNc T
3) which

asymptotes to 14.26 . . . . The horizontal axis is ρm = mα′/rH . In each case, the quotient α′/rH
can be read off from (2.16).

where c = `T is the ratio of radii of the thermal and Kaluza-Klein circles. The particular

value c = 1 signals the confinement/deconfinement transition temperature T = Tc =

1/` [25]. Therefore, strictly speaking, (2.18) is valid for c ≥ 1, or T ≥ Tc. The numerical

factor in (2.18) is the result of (2.17) with p = 4 after inserting ĉ2
T =

√
8πρ3/2(1 − ρ−3),

ĉ2X =
√

8πρ3/2 and ĉ2
R = (8π)−1/2ρ−3/2(1 − ρ−3)−1 [26]. For standard values αs = 1

2 and

Nc = 3, we get q̂ = 0.87 (2.93) GeV2/fm for c = 1 and T = 200 (300) MeV. These values

are just slightly smaller than those in LRW. Yet, the 5d origin of (2.18) is reflected in the

linear dependence in the ‘t Hooft coupling. In the following sections we shall apply the

expressions (2.14) and (2.17) to another couple of relevant backgrounds.

Another interesting use of the renormalized expression (2.17) is the possibility to extend

the analysis to quark sources of finite mass. Indeed, from the point of view of the derivation,

there is nothing peculiar about the integral upper limit being at the boundary, and it

could equally well extend up to a finite value ρm = rm/rH < ∞. The physics then is

dual to a geometrical setting in which the ends of the fundamental string are attached to

a probe brane that is placed in the above background at a fixed distance from the stack,

rm = mα′, set up by the mass of the quarks in the fundamental representation [27, 28].

It is quite evident from the analytic form of the formula (2.17) that cutting the value of

the integral will decrease the denominator, and hence enhance the value of q̂. Popular

scenarios include cases where a probe D7 (alternatively a D6 or a D8) are placed inside D3

(respectively D4) backgrounds. Plotting q̂ as a function of the mass of the quarks (figure 1),

we observe a very weak dependence until the mass is rather low, where the approximations

are questionable. For example, for the case of the D3 background, the horizontal axis is

ρm = m/(2π3/2
√
αSYMNcT ) ' m/2.7 GeV for αSYM = 1/2, Nc = 3 and T = 200 MeV. In

– 6 –
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order to increase q̂ by a 10% we must lower ρm until a value of ' 10, hence m ' 27 GeV.

3. q̂ at finite coupling

The AdS/CFT correspondence is a statement that goes beyond the classical limit of string

theory. In this limit, it maps classical solutions of supergravity to quantum field theory

vacua in the strong coupling limit, λ→∞. Corrections in λ−1 are in direct correspondence

with those in powers of α′ in the string theory side.4 In this paper we shall use the solution

given in [23, 30] corresponding to the α′ corrected near extremal D3-brane. The relevant

pieces of information of this solution can be casted as follows

ĉ2T (ρ) = ρ2(1− ρ−4)(1 + γ T (ρ) + · · · ) ,

ĉ2X(ρ) = ρ2(1 + γ X(ρ) + · · · ) ,

ĉ2R(ρ) = ρ−2(1− ρ−4)−1 (1 + γ R(ρ) + · · · ) ,

to first order in γ = ζ(3)
8 (α′/R2)3 ∼ 0.15λ−3/2. Here, following (2.13), we have already

extracted ∆R = R2/r2
H factors, with R2 =

√
λα′. The intervening functions read

T (ρ) =

(
−75ρ−4 − 1225

16
ρ−8 +

695

16
ρ−12

)
,

X(ρ) =

(
−25

16
ρ−8(1 + ρ−4)

)
, (3.1)

R(ρ) =

(
75ρ−4 +

1175

16
ρ−8 − 4585

16
ρ−12

)
.

Inserting this data in (2.17) with p = 3 and expanding to first order in γ gives

q̂(λ) = q̂(0)

(
1− γ

[
I

2a
+ 45

]
+ · · ·

)
(3.2)

with q̂(0) as given in [16], and

a =

∫ ∞

1

dρ√
ρ4 − 1

=
√
π

Γ (5/4)

Γ (3/4)
, (3.3)

I =

∫ ∞

1

R(ρ)−X(ρ) (ρ4 + 2) + T (ρ) (ρ4 − 1)√
ρ4 − 1

dρ = − 30725π3/2

924
√

2 Γ (3/4)2 . (3.4)

Evaluating yields

q̂(λ) = q̂(0)
(

1− 1.7652λ−3/2 + . . .
)
. (3.5)

Therefore, we see that finite coupling corrections tend to diminish the value of the quenching

parameter. For example, taking Nc = 3 and αSYM = 1/4, 1/2 and 1, we get a reduction

factor of 6, 2 and 0.8 percent respectively. Note that the decrease in the jet quenching

parameter towards weak coupling is suggestive of a smooth interpolation between the

strong coupling regime and the perturbative results. Obviously, the computation of higher

order corrections would be necessary to put this conclusion on more solid grounds.

4Corrections in α′ to timelike or spacelike Wilson lines used to compute the qq̄ potential have appeared

in [29].
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4. q̂ at finite chemical potential

The near horizon metric of a rotating black D3-brane with maximal number of angular

momenta reads as follows [31, 32], with the conventions of [33]:

ds2 =
√

∆

(
−H−1fdt2 + f−1dr2 +

r2

R2
d~x · d~x

)
+

1√
∆

3∑

i=1

R2Hi

[
dν2
i + ν2

i (dφi +Aidt)2
]
,

(4.1)

where ν1 = cos θ1, ν2 = sin θ1 cos θ2, ν3 = sin θ1 sin θ2, and H = H1H2H3, with

Ai =
1

R

√
µ

qi
(1−H−1

i ) , Hi = 1 +
qi
r2
, f =

r2

R2
H− µ

r2
, ∆ = H

3∑

i=1

ν2
i

Hi
. (4.2)

Upon Kaluza-Klein reduction, this becomes a charged AdS black hole solution of N =

2 U(1)3
R supergravity, where Ai plays the rôle of the gauge field. The holographic gauge

theory corresponding to (4.1) is N = 4 SU(N) supersymmetric Yang-Mills at finite tem-

perature and with a chemical potential for the U(1)3
R symmetry. It will be convenient to

trade the nonextremality parameter µ for the horizon radius, r = rH given as the largest

root of f(rH) = 0, i.e.,

µ =
r4
H

R2
H(rH) , (4.3)

and define the adimensional quantities

κi =
qi
r2
H

, ∆R =
R2

r2
H

. (4.4)

As usual, we go to dimensionless variable ρ = r/rH and find

Hi(ρ) = 1 + κiρ
−2 , f(ρ) =

1

∆R

(
ρ2H(ρ)− ρ−2H(1)

)
≡ 1

∆R
f̂(ρ) . (4.5)

Finally, the relevant functions entering the formula (2.14) can be easily extracted from (4.1):

ĉ2T (ρ) =

√
∆ f̂

H − 1√
∆

3∑

i=1

ν2
i H(1)

κiHi
(Hi−1)2 , ĉ2X(ρ) =

√
∆ ρ2 , ĉ2R(ρ) =

√
∆

f̂
. (4.6)

The factors in the metric depend on the internal angles. However, the terms above conspire

to give ∫ ∞

1

ĉRdρ

ĉ2X

√
ĉ2X − ĉ2T

=
1

H(1)

∫ ∞

1
dρ

(
ρ4H(ρ)

H(1)
− 1

)−1/2

, (4.7)

where all information about the internal angular coordinates has dissapeared. Now, given

that the Hawking temperature of this solution is given by [31]

T =
2 +

∑3
i=1 κi −

∏3
i=1 κi

2
√
H(1)

rH
πR2

(4.8)

– 8 –
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Figure 2: Plot of q̂ as function of different combinations of charges κi. The charges which are not

varied are set equal to zero. The stability bound chops the lower curves, but leaves the upper one

unbounded. At the origin the value is ' 18.87 as found in LRW.

with R2 =
√
λα′, substituting in (2.14) we find the answer

q̂(κi) =
π2T 3

√
λ√

2
H(1)

(
2
√
H(1)

2 +
∑3

i=1 κi −
∏3
i=1 κi

)3(∫ ∞

1
dρ

(
ρ4H(ρ)

H(1)
− 1

)−1/2
)−1

.

(4.9)

In order to analyze this result, it must be recalled that the domain of thermodynamical

stability of this solution [34, 35] (see also [36]) is bounded by the inequality5 κ1 + κ2 +

κ3−κ1 κ2 κ3 < 2. Plotting the right hand side of (4.9) numerically, we find the curves that

are shown in figure 2. The jet quenching parameter raises its value for nonzero charges.

The increase is not monotonous along the whole space of charges. In fact, though hardly

noticeable, it changes the sign of the slope along the line κ1 with κ2 = κ3 = 0. To see this

better, we have zoomed the interval κ1 ∈ [1.4, 2] in figure 3, where we can see that the

change in slope sign happens around κ1 = 1.8.

A comparison with recent results in the literature is in order. We certainly agree and

go beyond the perturbative analysis of Cáceres and Guijosa [19]. Also, when restricted to

the cases examined by Lin and Matsuo [20] (one charge) and Avramis and Sfetsos [21] (one

or two equal charges), we find qualitative agreement within the range of stability. We may

also examine less symmetrical configurations on a 3 dimensional plot in figure 4.

Besides analyzing the qualitative behaviour of q̂(κi) numerically, in order to compare

with other approaches, it may be of interest to perform an expansion in powers of quantum

field theoretical magnitudes. For this purpose, it is relevant to recall how the thermody-

namical magnitudes are related to geometrical quantities. In particular, the density of

5A wrong sign in this expression in a previous version of this paper has led to wrong plots that we have

corrected in this version.
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Figure 3: Zoom of the curve q̂(κ1) showing the value of the turning and end points.
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Figure 4: Evolution of q̂ in a sector of the plane (κ1, κ2 = κ3). The curve is chopped by the

thermodynamical stability bound.

physical charge and chemical potential are given respectively by [35, 37]

ρi =
πN2T 3

0

8

√
2κi

3∏

i=1

(1 + κi)
1/2 , (4.10)

µi ≡ Ai(r)
∣∣
r=rH

=
πT0
√

2κi
1 + κi

3∏

i=1

(1 + κi)
1/2 , (4.11)

where T0 = rH/(πR
2). From these expressions and (4.8), we should invert κi in terms

of ρi and T for the canonical ensemble and in terms of µi and T for the grand canonical

ensemble. This is dificult in the general case, so we may simplify for equal or vanishing

values of κi. For example, taking κ1 = κ and κ2 = κ3 = 0 the two (inverse) expansions
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yield

κC = ξ − ξ2 +
11

4
ξ3 + · · · , (4.12)

κGC = ζ + ζ2 +
5

4
ζ3 + · · · , (4.13)

with

ξ =

(
4
√

2ρ

πN2T 3

)2

, ζ =

(
µ√
2πT

)2

. (4.14)

Expanding (4.9) in powers of κ and inserting these series we obtain for the canonical and

grand-canonical ensemble respectively the following results

q̂C(ρ) = q̂(0)
(
1 + 0.63 ξ − 1.08 ξ2 + 2.83ξ3 + · · ·

)
, (4.15)

q̂GC(µ) = q̂(0)
(
1 + 0.63 ζ + 0.18 ζ2 + 0.06ζ3 + · · ·

)
. (4.16)

This expansion fully agrees with the one in [21] upon rescaling6 ξ → 2ξ2 and ζ → 2ξ̂2.

The computation of Wilson loops in thermal AdS backgrounds is a promising line of

research, of which the q̂ computation is a salient example. The identification of other

observables within the AdS/CFT framework (see, for a recent example, [38]) that can be

confronted with experimental data is an urget challenge. It seems clear to us that there

are several avenues for further exploration. Among these, the extension of our results to

less supersymmetric backgrounds is of neat interest. We hope to report on these issues in

the near future.
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